Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Vaccine ; 2021 Apr 27.
Article in English | MEDLINE | ID: covidwho-2265278

ABSTRACT

In early 2020, the COVID-19 pandemic led to substantial disruptions in global activities. The disruptions also included intentional and unintentional reductions in health services, including immunization campaigns against the transmission of wild poliovirus (WPV) and persistent serotype 2 circulating vaccine-derived poliovirus (cVDPV2). Building on a recently updated global poliovirus transmission and Sabin-strain oral poliovirus vaccine (OPV) evolution model, we explored the implications of immunization disruption and restrictions of human interactions (i.e., population mixing) on the expected incidence of polio and on the resulting challenges faced by the Global Polio Eradication Initiative (GPEI). We demonstrate that with some resumption of activities in the fall of 2020 to respond to cVDPV2 outbreaks and full resumption on January 1, 2021 of all polio immunization activities to pre-COVID-19 levels, the GPEI could largely mitigate the impact of COVID-19 to the delays incurred. The relative importance of reduced mixing (leading to potentially decreased incidence) and reduced immunization (leading to potentially increased expected incidence) depends on the timing of the effects. Following resumption of immunization activities, the GPEI will likely face similar barriers to eradication of WPV and elimination of cVDPV2 as before COVID-19. The disruptions from the COVID-19 pandemic may further delay polio eradication due to indirect effects on vaccine and financial resources.

2.
Vaccine ; 2021 May 13.
Article in English | MEDLINE | ID: covidwho-2265277

ABSTRACT

The Global Polio Eradication Initiative (GPEI) faces substantial challenges with managing outbreaks of serotype 2 circulating vaccine-derived polioviruses (cVDPV2s) in 2021. A full five years after the globally coordinated removal of serotype 2 oral poliovirus vaccine (OPV2) from trivalent oral poliovirus vaccine (tOPV) for use in national immunization programs, cVDPV2s did not die out. Since OPV2 cessation, responses to outbreaks caused by cVDPV2s mainly used serotype 2 monovalent OPV (mOPV2) from a stockpile. A novel vaccine developed from a genetically stabilized OPV2 strain (nOPV2) promises to potentially facilitate outbreak response with lower prospective risks, although its availability and properties in the field remain uncertain. Using an established global poliovirus transmission model and building on a related analysis that characterized the impacts of disruptions in GPEI activities caused by the COVID-19 pandemic, we explore the implications of trade-offs associated with delaying outbreak response to avoid using mOPV2 by waiting for nOPV2 availability (or equivalently, delayed responses waiting for national validation of meeting the criteria for nOPV2 initial use). Consistent with prior modeling, responding as quickly as possible with available mOPV2 promises to reduce the expected burden of disease in the outbreak population and to reduce the chances for the outbreak virus to spread to other areas. Delaying cVDPV2 outbreak response (e.g., modeled as no response January-June 2021) to wait for nOPV2 can considerably increase the total expected cases (e.g., by as many as 1,300 cVDPV2 cases in the African region during 2021-2023) and increases the likelihood of triggering the need to restart widescale preventive use of an OPV2-containing vaccine in national immunization programs that use OPV. Countries should respond to any cVDPV2 outbreaks quickly with rounds that achieve high coverage using any available OPV2, and plan to use nOPV2, if needed, once it becomes widely available based on evidence that it is as effective but safer in populations than mOPV2.

3.
J Infect Dis ; 224(9): 1529-1538, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1196994

ABSTRACT

BACKGROUND: Pakistan and Afghanistan remain the only reservoirs of wild poliovirus transmission. Prior modeling suggested that before the coronavirus disease 2019 (COVID-19) pandemic, plans to stop the transmission of serotype 1 wild poliovirus (WPV1) and persistent serotype 2 circulating vaccine-derived poliovirus (cVDPV2) did not appear on track to succeed. METHODS: We updated an existing poliovirus transmission and Sabin-strain oral poliovirus vaccine (OPV) evolution model for Pakistan and Afghanistan to characterize the impacts of immunization disruptions and restrictions on human interactions (ie, population mixing) due to the COVID-19 pandemic. We also consider different options for responding to outbreaks and for preventive supplementary immunization activities (SIAs). RESULTS: The modeling suggests that with some resumption of activities in the fall of 2020 to respond to cVDPV2 outbreaks and full resumption on 1 January 2021 of all polio immunization activities to pre-COVID-19 levels, Pakistan and Afghanistan would remain off-track for stopping all transmission through 2023 without improvements in quality. CONCLUSIONS: Using trivalent OPV (tOPV) for SIAs instead of serotype 2 monovalent OPV offers substantial benefits for ending the transmission of both WPV1 and cVDPV2, because tOPV increases population immunity for both serotypes 1 and 2 while requiring fewer SIA rounds, when effectively delivered in transmission areas.


Subject(s)
COVID-19 , Disease Outbreaks/prevention & control , Poliomyelitis/transmission , Poliovirus Vaccine, Oral , Poliovirus , Afghanistan/epidemiology , Disease Eradication , Humans , Pakistan/epidemiology , Pandemics , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus/immunology , SARS-CoV-2
4.
Risk Anal ; 41(2): 329-348, 2021 02.
Article in English | MEDLINE | ID: covidwho-916943

ABSTRACT

Delays in achieving the global eradication of wild poliovirus transmission continue to postpone subsequent cessation of all oral poliovirus vaccine (OPV) use. Countries must stop OPV use to end all cases of poliomyelitis, including vaccine-associated paralytic polio (VAPP) and cases caused by vaccine-derived polioviruses (VDPVs). The Global Polio Eradication Initiative (GPEI) coordinated global cessation of all type 2 OPV (OPV2) use in routine immunization in 2016 but did not successfully end the transmission of type 2 VDPVs (VDPV2s), and consequently continues to use type 2 OPV (OPV2) for outbreak response activities. Using an updated global poliovirus transmission and OPV evolution model, we characterize outbreak response options for 2019-2029 related to responding to VDPV2 outbreaks with a genetically stabilized novel OPV (nOPV2) strain or with the currently licensed monovalent OPV2 (mOPV2). Given uncertainties about the properties of nOPV2, we model different assumptions that appear consistent with the evidence on nOPV2 to date. Using nOPV2 to respond to detected cases may reduce the expected VDPV and VAPP cases and the risk of needing to restart OPV2 use in routine immunization compared to mOPV2 use for outbreak response. The actual properties, availability, and use of nOPV2 will determine its effects on type 2 poliovirus transmission in populations. Even with optimal nOPV2 performance, countries and the GPEI would still likely need to restart OPV2 use in routine immunization in OPV-using countries if operational improvements in outbreak response to stop the transmission of cVDPV2s are not implemented effectively.


Subject(s)
Disease Eradication/methods , Disease Outbreaks/prevention & control , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral , Poliovirus/immunology , Risk Assessment/methods , Global Health , Humans , Models, Theoretical , Poliomyelitis/epidemiology , Probability , Risk , Risk Management , Serogroup , Vaccination
5.
N Engl J Med ; 382(10): 929-936, 2020 03 05.
Article in English | MEDLINE | ID: covidwho-127

ABSTRACT

An outbreak of novel coronavirus (2019-nCoV) that began in Wuhan, China, has spread rapidly, with cases now confirmed in multiple countries. We report the first case of 2019-nCoV infection confirmed in the United States and describe the identification, diagnosis, clinical course, and management of the case, including the patient's initial mild symptoms at presentation with progression to pneumonia on day 9 of illness. This case highlights the importance of close coordination between clinicians and public health authorities at the local, state, and federal levels, as well as the need for rapid dissemination of clinical information related to the care of patients with this emerging infection.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections , Lung/diagnostic imaging , Pneumonia, Viral , Adult , Betacoronavirus/isolation & purification , Blood Chemical Analysis , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Disease Progression , Genome, Viral , Humans , Lung/pathology , Male , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , Radiography, Thoracic , SARS-CoV-2 , Sequence Analysis, DNA , Travel , United States
SELECTION OF CITATIONS
SEARCH DETAIL